DATASHEET

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

General Description

The TD9157 is a compact, flexible, high-efficiency, USB-friendly switch-mode charge management device for single-cell Li-ion and Li-polymer batteries used in a wide range of portable applications. The charge parameters can be programmed through an I²C interface. The IC integrates a synchronous PWM controller, power MOSFETs, input current sensing, high-accuracy current and voltage regulation, and charge termination, into a small WCSP package.

The IC charges the battery in three phases: conditioning, constant current and constant voltage. The input current is automatically limited to the value set by the host. Charge is terminated based on battery voltage and user-selectable minimum current level. A safety timer with reset control provides a safety backup for I²C interface. During normal operation, The IC automatically restarts the charge cycle if the battery voltage falls below an internal threshold and automatically enters sleep mode or high impedance mode when the input supply is removed. The charge status can be reported to the host using the I²C interface. During the charging process, the IC monitors its junction temperature (TJ) and reduces the charge current once TJ increases to about 125°C. To support USB OTG device, TD9157 can provide VBUS (5.05V) by boosting the battery voltage. The IC is available in 20-pin WCSP package.

Features

- Power Up System without Battery
- Charge Faster than Linear Chargers
- High-Accuracy Voltage and Current Regulation
 Input Current Regulation Accuracy: ±5%(100 mA and 500 mA)

Charge Voltage Regulation Accuracy:

±0.5% (25°C), ±1% (0°C to 125°C)

Charge Current Regulation Accuracy: ±5%

- Input Voltage Based Dynamic Power Management (VIN DPM)
- Bad Adaptor Detection and Rejection
- Safety Limit Register for Maximum Charge Voltage and Current Limiting
- High-Efficiency Mini-USB/AC Battery Charger for Single-Cell Li-Ion and Li-Polymer Battery Packs
- 20-V Absolute Maximum Input Voltage Rating
- 6.5-V Maximum Operating Input Voltage
- Built-In Input Current Sensing and Limiting
- Integrated Power FETs for Up To 1.25-A Charge Rate
- Programmable Charge Parameters through I²C[™]
 Compatible Interface (up to 3.4 Mbps): Input Current Limit
 VIN DPM Threshold
 Fast-Charge/Termination Current
 Charge Regulation Voltage (3.5 V to 4.44 V)
 Low Charge Current Mode Enable/Disable
 Termination Enable/Disable
- Synchronous Fixed-Frequency PWM Controller Operating at 3 MHz With 0% to 99.5% Duty Cycle
- Automatic High Impedance Mode for Low Power Consumption
- Robust Protection
 Reverse Leakage Protection Prevents Battery Drainage
 Thermal Regulation and Protection
 Input/Output Overvoltage Protection
- Status Output for Charging and Faults
- USB Friendly Boot-Up Sequence
- Automatic Charging
- Boost Mode Operation for USB OTG
 Input Voltage Range (from Battery): 3.2 V to 4.5V
- 2.1 mm x 2 mm 20-Pin WCSP Package

Applications

- Mobile and Smart Phones
- M3 Players
- Handheld Devices

Pin Configurations

PIN LAYOUT (20-Bump YFF Package) (TOP VIEW)

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Pin Description

NAME	NO	I/O	DESCRIPTION
CEOUT			Battery voltage and current sense input. Bypass it with a ceramic capacitor (minimum
CSOUT	E4		0.1 μ F) to PGND if there are long inductive leads to battery.
VBUS	5 A1, A2 I/O		Charger input voltage. Bypass it with a 1- μ F ceramic capacitor from VBUS to PGND. It
VBUS			also provides power to the load during boost mode .
PMID	B1, B2, B3	1/0	Connection point between reverse blocking FET and high-side switching FET. Bypass it
PIVIID	DI, DZ, D Э	1/0	with a minimum of 3.3-µF capacitor from PMID to PGND.
SW	C1, C2, C3	0	Internal switch to output inductor connection.
воот	A3	1/0	Bootstrap capacitor connection for the high-side FET gate driver. Connect a 10-nF
воот	AS	1/0	ceramic capacitor (voltage rating ≥10 V) from BOOT pin to SW pin.
PGND	D1, D2, D3		Power ground
CSIN	E1		Charge current-sense input. Battery current is sensed across an external sense resistor.
CSIN			A 0.1-µF ceramic capacitor to PGND is required.
SCL	A4	I	I ₂ C interface clock. Connect a 10-kΩpullup resistor to 1.8V rail (V _{AUX} = V _{CC_HOST})
SDA	B4	I/O	I_2C interface data. Connect a 10-k Ω pullup resistor to 1.8V rail (V _{AUX} = V _{CC_HOST})
			Charge status pin. Pull low when charge in progress. Open drain for other conditions.
STAT	C4	0	During faults, a 128- μ s pulse is sent out. STAT pin can be disabled by the EN_STAT bit in
			control register. STAT can be used to drive a LED or communicate with a host processor.
VREF	E3	ο	Internal bias regulator voltage. Connect a $1\mu F$ ceramic capacitor from this output to
VNEF	ED	0	PGND. External load on VREF is not recommended.
CD	E2		Charge disable control pin. CD=0, charge is enabled. CD=1, charge is disabled and VBUS
CD	ΕZ		pin is high impedance to GND.
			Boost mode enable control or input current limiting selection pin. When OTG is in active
			status, the device is forced to operate in boost mode. It has higher priority over I_2C
OTG	D4	I	control and can be disabled using the control register. At POR while in default mode,
			the OTG pin is used as the input current limiting selection pin. The I ₂ C register is ignored
			at startup. When OTG=High, I_{IN_LIMIT} = 500mA and when OTG = Low, I_{IN_LIMIT} = 100mA.

Ordering Information

	TD9157	므 므
Circuit Type ————		Packing: Blank: Tube R:Type and Reel
V: WCSP Package		

Functional Block Diagram

Function Block Diagram of TD9157 in Charge Mode

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Functional Block Diagram(Cont.)

Function Block Diagram of TD9157 in Boost Mode

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Absolute Maximum Ratings

				UNIT
	Supply voltage range (with respect to PGND(3))	VBUS; Vpmid≥Vbus –0.3 V	-2 to 20	V
	Input voltage range (with respect to PGND(3)) SCL, SDA, OTG, SLRST, CSIN, CSOUT, CD		–0.3 to 7	v
		PMID, STAT	–0.3 to 20	V
	Output voltage range (with respect to PGND(3))	VREF	7	V
		SW, BOOT	–0.7 to 20	V
	Voltage difference between CSIN and CSOUT inputs (V(cs	±7	V	
	Voltage difference between BOOT and SW inputs (V $(BOOT$	-0.3 to 7	V	
	Voltage difference between VBUS and PMID inputs (V(VBUS) – V(PMID))		-7 to 0.7	v
	Voltage difference between PMID and SW inputs (V(PMID)) – V(sw))	-0.7 to 20	V
	Output sink	STAT	10	mA
	Output Current (average)	sw	1.55(2)	А
TA	Operating free-air temperature range		-30 to 85	°C
ιT	Junction temperature		-40 to 125	°C
Tstg	Storage temperature		–45 to 150	°C

Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
VBUS	Supply voltage, TD9157	4		6(1)	V
τı	TJ Operating junction temperature range			125	°C

Thermal Characteristics

	THERMAL METRIC		UNITS
ALθ	Junction-to-ambient thermal resistance	85	
θյCtop	Junction-to-case (top) thermal resistance	25	
Өјв	Junction-to-board thermal resistance	55	°C/W
τιψ	Junction-to-top characterization parameter 4		C/ W
ψιв	Junction-to-board characterization parameter	50	
θJCbot	Junction-to-case (bottom) thermal resistance	n/a	

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Electrical Characteristics

VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = -40°C to 125°C, TJ = 25°C for typical values (unless otherwise noted)

PARAMETER	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CURR	RENTS					
		VBUS > VBUS(min), PWM switching		10		mA
I(VBUS)	VBUS supply current control	VBUS > VBUS(min), PWM NOT switching			5	
		0°C < TJ < 85°C, CD=1 or HZ_MODE=1		15	23	μA
h . L s share a		0°C < TJ < 85°C, V(CSOUT) = 4.2 V, High			-	
ligk Leakage current from battery to VBUS pin		Impedance mode, VBUS = 0 V			5	μA
Dette z die ele e		0°C < TJ < 85°C, V(CSOUT) = 4.2 V, High				
-	arge current in High Impedance mode, (CSIN,	Impedance mode, V = 0 V, SCL, SDA, OTG = 0 V			23	μA
CSOUT, SW pins)		or 1.8 V				
VOLTAGE RE	EGULATION					
V(OREG) Output	It regulation voltage programable range	Operating in voltage regulation, programmable	3.5		4.44	V
Voltago rogula		TA = 25°C	-0.5%		0.5%	
vollage regula	ation accuracy		-1%		1%	
CURRENT RE	EGULATION (FAST CHARGE)					
IO(CHARGE) Output charge current programmable range		$V_{(LOWV)} \leq V_{(CSOUT)} < V_{(OREG)}, VBUS > V_{(SLP)}, R_{(SNS)}$	550		1050	mA
		= 68 m Ω , LOW_CHG=0, Programmable	550		1250	IIIA
Low charge current		VLOWV ≤VCSOUT < VOREG, VBUS >VSLP, RSNS= 68		325	250	
		mΩ, LOW_CHG=1, OTG=High		525	350	mA
Regulation ac	curacy of the voltage across R(SNS) (for charge	37.4 mV ≤V(IREG)< 44.2mV	-3.5%		3.5%	
current regula	tion) V(IREG) = IO(CHARGE) × R(SNS)	44.2 mV ≤V(IREG)	-3%		3%	
WEAK BATTI	ERY DETECTION					
V(LOWV) Weak	battery voltage threshold programmable range2(1)	Adjustable using I2C control	3.4		3.7	V
Weak battery	voltage accuracy		-5%		5%	
Hysteresis for	· V(LOWV)	Battery voltage falling		100		mV
Deglitch time t	for weak battery threshold	Rising voltage, 2-mV over drive, tRISE = 100 ns		30		ms
CD, OTG and	I SLRST PIN LOGIC LEVEL					
Vı∟ Input low th	hreshold level				0.4	V
Vін Input high	threshold level		1.3			V
I(bias) Input bias	is current	Voltage on control pin is 5 V			1.0	μA
CHARGE TEF	RMINATION DETECTION					
Tormination		$V_{(CSOUT)} > V_{(OREG)} - V_{(RCH)}, VBUS > V_{(SLP)}, R_{(SNS)}$	50		400	mA
Termination charge current programmable range I(TERM)		= 68 mΩ, Programmable	50		400	
Deglitch time for charge termination		Both rising and falling, 2-mV overdrive, tRISE, tFALL		20		
		= 100 ns		30		ms
Desulation		3.4 mV ≤V(IREG_TERM) ≤6.8 mV	-15%		15%	
-	curacy for termination current across R(sNs)	6.8 mV < V(IREG_TERM) ≤17 mV	-10%		10%	
V(IREG_TERM) =	IO(TERM) × R(SNS)	17 mV < V(IREG_TERM) ≤27.2 mV	-5.5%		5.5%	

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Electrical Characteristics(Cont.)

VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = -40°C to 125°C, TJ = 25°C for typical values (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
BAD ADAPTO	DR DETECTION						l
VIN(min) Input	voltage lower limit	BAD ADAPTOR DETECTION		3.6	3.8	4.0	V
Deglitch time for VBUS rising above VIN(min)		Rising voltage, 2-m	V overdrive, trise = 100 ns		30		ms
Hysteresis for	Vın(min)	Input voltage rising		100		200	mV
ISHORT Current	source to GND	During bad adaptor	detection	20	30	40	mA
tINT Detection I	nterval	Input power source	detection		2		s
INPUT BASE	D DYNAMIC POWER MANAGEMENT						
Input Voltage I	DPM threshold programmable VIN_DPM range			4.2		4.76	V
VIN DPM three	shold accuracy			-3%		1%	
INPUT CURRI	ENT LIMITING						
		lu = 100 × 1	TJ = 0°C – 125°C	88	93	98	mA
	Input current limiting threshold	IIN = 100 mA	$T_J = -40^{\circ}C - 125^{\circ}C$	86	93	98	I
lin_limit		hu = 500 m A	T _J = 0°C – 125°C	450	475	500	mA
		Iın = 500 mA	T _J = -40°C -125°C	440	475	500	I
VREF BIAS R	EGULATOR		·				
VREF Internal bias regulator voltage		VBUS >VIN(min) or V(CSOUT) > VBUS(min), I(VREF)		2		6.5	V
		= 1 mA, C(vReF) = 1 μF					
VREF output short current limit					30		mA
BATTERY RE	CHARGE THRESHOLD						
V(RCH) Recharg	ge threshold voltage	Below V(OREG)		100	120	150	mV
Deglitch time		V(CSOUT) decreasing below threshold, tFALL = 100			130		ms
0		ns, 10-mV overdrive					
STAT OUTPU	TS						
Vol(stat)	Low-level output saturation voltage, STAT pin	Io = 10 mA, sink current				0.55	V
	High-level leakage current for STAT	Voltage on STAT pin is 5 V				1	μA
I2C BUS LOG	IC LEVELS AND TIMING CHARACTERISTICS						
VoL Output low threshold level		Io = 10 mA, sink current				0.4	V
VIL Input low threshold level		V _(pull-up) = 1.8 V, SDA and SCL				0.4	V
VIH Input high threshold level		V _(pul-up) = 1.8 V, SDA and SCL		1.2			V
I(BIAS) Input bias current		V(pull-up) = 1.8 V, SD	A and SCL			1	μA
f(SCL) SCL clock frequency						3.4	MHz
BATTERY DE	TECTION						
I(DETECT)	Battery detection current before charge done (sink current) (2)	Begins after termination detected, V(CSOUT) ≤V(BATREG)			-0.5		mA
t DETECT	Battery detection time		· ···/		262		ms

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Electrical Characteristics(Cont.)

VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = -40°C to 125°C, TJ = 25°C for typical values (unless otherwise noted)

PARAMETER	2	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
SLEEP COM	PARATOR					
Sleep-mode	entry threshold, V(SLP) VBUS – VCSOUT	2.3 V ≤V(CSOUT) ≤V(BATREG), VBUS falling	0	40	100	mV
$V(SLP_EXIT)$	Sleep-mode exit hysteresis	2.3 V ≤V(CSOUT) ≤V(BATREG)	140	200	260	mV
	Deglitch time for VBUS rising above V _(SLP) + V _(SLP, EXIT)	Rising voltage, 2-mV overdrive, truse = 100 ns		30		ms
UNDERVOLT						
UVLO IC activ	ve threshold voltage	VBUS rising -Exits UVLO	3.05	3.3	3.55	V
UVLO(HYS) IC	active hysteresis	VBUS falling below UVLO -Enters UVLO	120	150		mV
Power up dela	ay			140		ms
PWM						
Voltage from	BOOT pin to SW pin	During charge or boost operation			6.5	V
Internal top re	everse blocking MOSFET on-resistance	IIN(LIMIT) = 500 mA, Measured from VBUS to PMID		180	250	
Internal top N	-channel Switching MOSFET on-resistance	Measured from PMID to SW, VBOOT - VSW= 4V		120	250	mΩ
Internal bottom N-channel MOSFET on-resistance		Measured from SW to PGND		110	210	-
f(osc) Oscillato	pr frequency			3.0		MHz
Frequency accuracy			-10%		10%	
D(MAX) Maximi	um duty cycle			99.5 %		
D(міn) Minimui	m duty cycle		0	,,,		-
Synchronous threshold(3)	mode to non-synchronous mode transition current	Low-side MOSFET cycle-by-cycle current sensing		100		mA
CHARGE MO	DE PROTECTION					
VOVP_IN_USB	Input VBUS OVP threshold voltage	VBUS threshold to turn off converter during charge	6.3	6.5	6.7	V
Vovp	Output OVP threshold voltage	V(CSOUT) threshold over V(OREG) to turn off charger during charge	110	117	121	%Voreg
	V(OVP) hysteresis	Lower limit for V(CSOUT) falling from above V(OVP)		11		1
ILIMIT Cycle-by-cycle current limit for charge		Charge mode operation	1.8	2.4	3.0	А
	Trickle to fast charge threshold	V(CSOUT) rising	2.0	2.1	2.2	V
VSHORT	VSHORT hysteresis	V(CSOUT) falling below VSHORT		100		mV
ISHORT Trickle	charge charging current	V(CSOUT) ≤VSHORT)	20	30	40	mA

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Electrical Characteristics(Cont.)

PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BOOST MO	DE OPERATION FOR VBUS (OPA_MODE = 1, HZ_M	ODE = 0)				
VBUS_B BOOS	st output voltage (to VBUS pin)	2.5V < V(CSOUT) < 4.5 V		5.05		V
Boost output voltage accuracy		Including line and load regulation	-3%		3%	
Іво	Maximum output current for boost	V _{BUS_B} = 5.05 V, 2.5 V < V _(CSOUT) < 4.5 V, T _J = 0°C - 125°C	200			mA
Івліміт Cycle	by cycle current limit for boost	$V_{BUS_B} = 5.05 \text{ V}, 2.5 \text{ V} < V_{(CSOUT)} < 4.5 \text{ V}$		1.0		А
VBUSOVP	Overvoltage protection threshold for boost (VBUS pin)	Threshold over VBUS to turn off converter during boost	5.8	6.0	6.2	V
	VBUSOVP hysteresis	VBUS falling from above VBUSOVP		162		mV
	Maximum battery voltage for boost (CSOUT pin)	V(CSOUT) rising edge during boost	4.75	4.9	5.05	V
VBATMAX	VBATMAX hysteresis	V(CSOUT) falling from above VBATMAX		200		mV
	mum battery voltage for boost (CSOUT pin)	During boosting		2.5		V
V BATMIN IVIITI		Before boost starts		2.9	3.05	V
Boost output resistance at high-impedance mode (From VBUS to PGND)		CD = 1 or HZ_MODE = 1	217			kΩ
PROTECTIO	DN					
TSHTDWN) Thermal trip				165		
Thermal hysteresis				10		°C
TCF Thermal regulation threshold		Charge current begins to reduce		120		
t₁₅м 15 minu	te safety timer	15 Minute mode	12		15	m

DATASHEET

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Typical Operating Characteristics

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Typical Operating Characteristics(Cont.)

CHARGER EFFICIENCY

DATASHEET

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Typical Operating Characteristics(Cont.)

LOAD STEP UP RESPONSE (BOOST MODE)

VBUS = 5.05 V, VBAT = 3.5V, IBUS = 42 mA

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Typical Operating Characteristics(Cont.)

VBUS = 5.05, VBAT = 3.5V, IBUS = 360-0 mA

VBUS = 5.05 V, VBAT = 3.5V, IBUS = 217 mA

BOOST TO CHARGE MODE TRANSITION (OTG CONTROL)

Typical Operating Characteristics(Cont.)

50

100

Load Current at VBUS - mA

150

5.03 5.02 5.01 5

0

200

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Type Application Circuit

VBUS = 5 V, ICHARGE = 1250 mA, VBAT = 3.5 V to 4.44 V (Adjustable).

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

OPERATIONAL FLOW CHART

Operational Flow Chart of TD9157 in Charge Mode

Function Description

For a current restricted power source, such as a USB host or hub, a high efficiency converter is critical to fully use the input power capacity for quickly charging the battery. Due to the high efficiency for a wide range of input voltages and battery voltages, the switch mode charger is a good choice for high speed charging with less power loss and better thermal management than a linear charger.

The TD9157 are highly integrated synchronous switch-mode chargers, featuring integrated FETs and small external components, targeted at extremely space-limited portable applications powered by 1-cell Li-lon or Lipolymer battery pack. Furthermore, TD9157 also has bi-directional operation to achieve boost function for USB OTG support.

The TD9157 have three operation modes: charge mode, boost mode, and high impedance mode. In charge mode, the IC supports a precision Li-ion or Li-polymer charging system for single-cell applications. In boost mode, the IC boosts the battery voltage to VBUS for powering attached OTG devices. In high impedance mode, the IC stops charging or boosting and operates in a mode with very low current from VBUS or battery, to effectively reduce the power consumption when the portable device is in standby mode. Through I₂C communication with a host, referred to as "HOST" control/mode, the IC starts in default mode. During default mode operation, the charger will still charge the battery but using each register's default values.

Input Voltage Protection

Input Overvoltage Protection

The IC provides a built-in input overvoltage protection to protect the device and other components against damage if the input voltage (Voltage from VBUS to PGND) goes too high. When an input overvoltage condition is detected, the IC turns off the PWM converter, sets fault status bits, and sends out a fault pulse from the STAT pin. Once VBUS drops below the input overvoltage exit threshold, the fault is cleared and charge process resumes.

Bad Adaptor Detection/Rejection

Although not shown in '**Operational Flow Chart of TD9157 in Charge Mode**', at power-on-reset (POR) of VBUS, the IC performs the bad adaptor detection by applying a current sink to VBUS. If the VBUS is higher than VIN(MIN) for 30ms, the adaptor is good and the charge process begins. Otherwise, if the VBUS drops below VIN(MIN), a bad adaptor is detected. Then, the IC disables the current sink, sends a send fault pulse in FAULT pin and sets the bad adaptor flag (B2 - B0 = 011 for Register 00H). After a delay of TINT, the IC repeats the adaptor detection process, as shown in 'Bad Adaptor Detection Circuit' and 'Bad Adaptor Detection Scheme Flow Chart'

Bad Adaptor Detection Circuit

Bad Adaptor Detection Scheme Flow Chart

Sleep Mode

The IC enters the low-power sleep mode if the VBUS pin voltage falls below the sleep-mode entry threshold, VCSOUT+VSLP, and VBUS is higher than the bad adaptor detection threshold, VIN(MIN). This feature prevents draining the battery during the absence of VBUS. During sleep mode, both the reverse blocking switch Q1 and PWM are turned off.

Input Voltage Based DPM (Special Charger Voltage Threshold)

During the charging process, if the input power source is not able to support the programmed or default charging current, the VBUS voltage will decrease. Once the VBUS drops to VIN_DPM (default 4.52V), the charge current begins to taper down to prevent any further drop of VBUS. When the IC enters this mode, the charge current is lower than the set value and the special charger bit is set (B4 in Register 05H). This feature makes the IC compatible with adapters having different current capabilities.

BATTERY PROTECTION Output Overvoltage Protection

Techcode[®]

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

The IC provides a built-in overvoltage protection to protect the device and other components against damage if the battery voltage goes too high, as when the battery is suddenly removed. When an overvoltage condition is detected, the IC turns off the PWM converter, sets fault status bits, and sends out a fault pulse from the STAT pin. Once V(CSOUT) drops to the battery overvoltage exit threshold, the fault is cleared and charge process resumes.

Battery Short Protection

During the normal charging process, if the battery voltage is lower than the short-circuit threshold, VSHORT, the charger operates in short circuit mode with a lower charge rate of ISHORT.

Battery Detection in Host Mode

For applications with removable battery packs, the IC provides a battery absent detection scheme to reliably detect insertion or removal of battery packs.

During the normal charging process with host control, once the voltage at the CSOUT pin is above the battery recharge threshold, VOREG- VRCH, and the termination charge current is detected, the IC turns off the PWM charge and enables a discharge current, IDETECT, for a period of tDETECT, (262 ms typical) then checks the battery voltage. If the battery voltage is still above the recharge threshold after tDETECT, the battery is present. On the other hand, if the battery voltage is below the battery recharge threshold, the battery is absent. Under this condition, the charge parameters (such as input current limit) are reset to the default values and charge resumes after a delay of TINT. This function ensures that the charge parameters are reset whenever the battery is replaced.

15-MINUTE SAFETY TIMER

The TD9157 stays in 15-minute (default) mode indefinitely until I₂C communication begins. When I₂C communication begins, the host processor does not need to reset this 15 minutes timer while charging the battery.

USB FRIENDLY POWER UP

The default control bits set the charging current and regulation voltage low as a safety feature to avoid violating USB spec and over-charging any of the Li-Ion chemistries, while the host has lost communication. The input current limiting is described below.

INPUT CURRENT LIMITING AT POWER UP

The input current sensing circuit and control loop are integrated into the IC. When operating in default mode, the OTG pin logic level sets the input current limit to 100mA for a logic low and 500mA for a logic high. In host mode, the input current limit is set by the programmed control bits in register 01H.

CHARGE MODE OPERATION

Charge Profile

Once a good battery with voltage below the recharge threshold has been inserted and a good adapter is attached, the TD9157 enters charge mode. In charge mode, the IC has five control loops to regulate input voltage, input current, charge current, charge voltage and device junction temperature. During the charging process, all five loops are enabled and the one that is dominant takes control. The IC supports a precision Li-ion or Li-polymer charging system for single-cell applications.' **Typical Charging Profile for without Input Current Limit**' indicates a typical charge profile without input current regulation loop. It is the traditional CC/CV charge curve, while '**Typical Charging Profile for with Input Current Limit**' shows a typical charge profile when input current limiting loop is dominant during the constant current mode. In this case, the charge current is higher than the input current so the charge process is faster than the linear chargers. The input voltage threshold for DPM loop, input current limits, charge current, termination current, and charge voltage are all programmable using l₂C interface.

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

PWM Controller in Charge Mode

The IC provides an integrated, fixed 3 MHz frequency voltage-mode controller to regulate charge current or voltage. This type of controller is used to improve line transient response, thereby, simplifying the compensation network used for both continuous and discontinuous current conduction operation. The voltage and current loops are internally compensated using a Type-III compensation scheme that provides enough phase margin for stable operation, allowing the use of small ceramic capacitors with a low ESR. The device operates between 0% to 99.5% duty cycles.

The IC has back to back common-drain N-channel FETs at the high side and one N-channel FET at low side. The input N-FET (Q1) prevents battery discharge when VBUS is lower than VCSOUT. The second high-side N-FET (Q2) is the switching control switch. A charge pump circuit is used to provide gate drive for Q1, while a bootstrap circuit with an external bootstrap capacitor is used to supply the gate drive voltage for Q2.

Cycle-by-cycle current limit is sensed through the FETs Q2 and Q3. The threshold for Q2 is set to a nominal 2.4A peak current. The low-side FET (Q3) also has a current limit that decides if the PWM Controller will operate in synchronous or non-synchronous mode. This threshold is set to 100mA and it turns off the low-side N-channel FET (Q3) before the current reverses, preventing the battery from discharging. Synchronous operation is used when the current of the low-side FET is greater than 100mA to minimize power losses.

Battery Charging Process

At the beginning of precharge, while battery voltage is below the V(SHORT) threshold, the IC applies a short-circuit current, I(SHORT), to the battery. When the battery voltage is above VSHORT and below VOREG, the charge current ramps up to fast charge current, IOCHARGE, or a charge current that corresponds to the input current of IN_LIMIT. The slew rate for fast charge current is controlled to minimize the current and voltage over-shoot during transient. Both the input current limit, IN_LIMIT, and fast charge current, IOCHARGE, can be set by the host. Once the battery voltage reaches the regulation voltage, VOREG, the charge current is tapered down as shown in '**Typical Charging Profile**'. The voltage regulation feedback occurs by monitoring the battery-pack voltage between the CSOUT and PGND pins. In HOST mode, the regulation voltage is adjustable (3.5V to 4.44V) and is programmed through I₂C interface. In 15-minute mode, the regulation voltage is fixed at 3.54V.

The IC monitors the charging current during the voltage regulation phase. If termination is enabled, during the normal

DATASHEET

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support **TD9157**

charging process with HOST control, once the voltage at the CSOUT pin is above the battery recharge threshold, VOREG-VRCH for the 32-ms (typical) deglitch period, and the termination charge current ITERM is detected, the IC turns off the PWM charge and enables a discharge current, IDETECT, for a period of tDETECT (262ms typical), then checks the battery voltage. If the battery voltage is still above the recharge threshold after tDETECT, the battery charging is complete. The battery detection routine is used to ensure termination did not occur because the battery was removed. After 40ms (typical) for synchronization purposes of the EOC state and the counter, the status bit and pin are updated to indicate charging has completed. The termination current level is programmable. To disable the charge current termination, the host can set the charge termination bit (I Term) of charge control register to 0, refer to I₂C section for detail.

A new charge cycle is initiated when one of the following conditions is detected:

- The battery voltage falls below the V(OREG) V(RCH) threshold.
- VBUS Power-on reset (POR), if battery voltage is below the V(LOWV) threshold.
- CE bit toggle or RESET bit is set (Host controlled)

Thermal Regulation and Protection

To prevent overheating of the chip during the charging process, the IC monitors the junction temperature, T_J, of the die and begins to taper down the charge current once TJ reaches the thermal regulation threshold, TCF. The charge current is reduced to zero when the junction temperature increases approximately 10°C above TcF. In any state, if TJ exceeds TSHTDWN, the IC suspends charging. In thermal shutdown mode, PWM is turned off and all timers are frozen. Charging resumes when TJ falls below TSHTDWN by approximately 10°C.

Charge Status Output, STAT Pin

The STAT pin is used to indicate operation conditions. STAT is pulled low during charging when EN_STAT bit in control register (00H) is set to "1". Under other conditions, STAT pin behaves as a high impedance (open-drain) output. Under fault conditions, a 128-µs pulse will be sent out to notify the host. The status of STAT pin at different operation conditions is summarized in 'STAT Pin Summary'. The STAT pin can be used to drive an LED or communicate to the host processor.

CHARGE STATE	STAT
Charge in progress and EN_STAT=1	Low
Other normal conditions	Open-drain
Charge mode faults: Timer fault, sleep mode, VBUS or battery overvoltage, poor input source,	128-µs pulse, then open-drain
VBUS UVLO, no battery, thermal shutdown	
Boost mode faults: Timer fault, over load, VBUS or battery overvoltage, low battery voltage, thermal	128-µs pulse, then open-drain
shutdown	

STAT Pin Summary

Control Bits in Charge Mode

CE Bit (Charge Mode)

The CE bit in the control register is used to disable or enable the charge process. A low logic level (0) on this bit enables the charge and a high logic level (1) disables the charge.

RESET Bit

The RESET bit in the control register is used to reset all the charge parameters. Writing '1" to the RESET bit will reset all the charge parameters to default values except the safety limit register, and RESET bit is automatically cleared to zero once the charge parameters get reset. It is designed for charge parameter reset before charge starts and it is not recommended to set the RESET bit while charging or boosting are in progress.

OPA Mode Bit

OPA MODE is the operation mode control bit. When OPA MODE = 0, the IC operates as a charger if HZ MODE is set to "0", refer to 'Operation Mode Summary' for detail. When OPA_MODE=1 and HZ_MODE=0, the IC operates in boost

mode.

Operation Mode Summary

OPA_MODE	HZ_MODE	PERATION MODE	
0	0	arge (no fault) Charge configure (fault, Vbus > UVLO) High impedance (Vbus < UVLO)	
1	0	oost (no faults) Any fault go to charge configure mode	
Х	1	High impedance	

CONTROL PINS IN CHARGE MODE

CD Pin (Charge Disable)

The CD pin is used to disable the charging process. When the CD pin is low, charge is enabled. When the CD pin is high, charge is disabled and the charger enters high impedance (Hi-Z) mode.

BOOST MODE OPERATION

In host mode, when OTG pin is high (and OTG_EN bit is high thereby enabling OTG functionality) or the operation mode bit (OPA_MODE) is set to 1, the device operates in boost mode and delivers the power to VBUS from the battery. In normal boost mode converts the battery voltage to V_{BUS-B} (about 5.05V) and delivers a current as much as I_{BO} (about 200mA) to support other USB OTG devices connected to the USB connector.

PWM Controller in Boost Mode

Similar to charge mode operation, in boost mode, the IC provides an integrated, fixed 3 MHz frequency voltagemode controller to regulate output voltage at PMID pin (VPMID). The voltage control loop is internally compensated using a Type-III compensation scheme that provides enough phase margin for stable operation with a wide load range and battery voltage range.

In boost mode, the input N-FET (Q1) prevents battery discharge when VBUS pin is over loaded. Cycle-by-cycle current limit is sensed through the internal sense FET for Q3. The cycle-by-cycle current limit threshold for Q3 is set to a nominal 1.0-A peak current. Synchronous operation is used in PWM mode to minimize power losses.

Boost Start Up

To prevent the inductor saturation and limit the inrush current, a soft-start control is applied during the boost start up.

PFM Mode at Light Load

In boost mode, under light load conditions, the IC operates in pulse skipping mode (PFM mode) to reduce the power loss and improve the converter efficiency. During boosting, the PWM converter is turned off once the inductor current is less than 75mA; and the PWM is turned back on only when the voltage at PMID pin drops to about 99.5% of the rated output voltage. A unique pre-set circuit is used to make the smooth transition between PWM and PFM mode.

Protection in Boost Mode

Output Overvoltage Protection

The IC provides a built-in over-voltage protection to protect the device and other components against damage if the VBUS voltage goes too high. When an over-voltage condition is detected, the IC turns off the PWM converter, resets OPA_MODE bit to 0, sets fault status bits, and sends out a fault pulse from the STAT pin. Once VBUS drops to the normal level, the boost starts after host sets OPA_MODE to "1" or OTG pin stays in active status.

Output Overload Protection

The IC provides a built-in over-load protection to prevent the device and battery from damage when VBUS is over loaded. Once the over load condition is detected, Q1 operates in linear mode to limit the output current. If the over load condition lasts for more than 30ms, the over-load fault is detected. When an over-load condition is detected, the IC turns off the PWM converter, resets OPA_MODE bit to 0, sets fault status bits and sends out fault pulse in STAT pin. The boost will not start until the host clears the fault register.

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Battery Overvoltage Protection

During boosting, when the battery voltage is above the battery over voltage threshold, VBATMAX, or below the minimum battery voltage threshold, VBATMIN, the IC turns off the PWM converter, resets OPA_MODE bit to 0, sets fault status bits and sends out fault pulse in STAT pin. Once the battery voltage goes above VBATMIN, the boost will start after the host sets OPA_MODE to "1" or OTG pin stays in active status.

STAT Pin in Boost Mode

During normal boosting operation, the STAT pin behaves as a high impedance (open-drain) output. Under fault conditions, a 128- μ s pulse is sent out to notify the host.

HIGH IMPEDANCE (Hi-Z) MODE

In Hi-Z mode, the charger stops charging and enters a low quiescent current state to conserve power. Taking the CD pin high causes the charger to enter Hi-Z mode. When in default mode and the CD pin is low, the charger automatically enters Hi-Z mode if

1. VBUS > UVLO and a battery with VBAT > VLOWV is inserted, or

2. VBUS falls below UVLO.

When in HOST mode and the CD is low, the charger can be placed into Hi-Z mode if the HZ-MODE control bit is set to "1" and OTG pin is not in active status.

In order to exit Hi-Z mode, the CD pin must be low, VBUS must be higher than UVLO and the HOST must write a "0" to the HZ-MODE control bit.

I₂C is a 2-wire serial interface developed by Philips Semiconductor (see I₂C-Bus Specification, Version 2.1, January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I₂C compatible devices connect to the I₂C bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.

The IC works as a slave and is compatible with the following data transfer modes, as defined in the I₂C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and high-speed mode (up to 3.4 Mbps in write mode). The interface adds flexibility to the battery charge solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. Register contents remain intact as long as supply voltage remains above 2.2 V (typical). I₂C is asynchronous, which means that it runs off of SCL. The device has no noise or glitch filtering on SCL, so SCL input needs to be clean. Therefore, it is recommended that SDA changes while SCL is LOW.

The data transfer protocol for standard and fast modes is the same; therefore, they are referred to as F/S-mode in this document. The protocol for high-speed mode is different from the F/S-mode, and it is referred to as HSmode. The TD9157B device supports 7-bit addressing only. The device 7-bit address is defined as '1101010'(6AH).

F/S Mode Protocol

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in '**START and STOP Condition**'. All I₂C-compatible devices should recognize a start condition.

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

START and STOP Condition

The master then generates the SCL pulses, and transmits the 8-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see '**Bit Transfer on the Serial Interface**'). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see '**Bit Transfer on the Serial Interface**') by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

Bit Transfer on the Serial Interface

The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see '**Bus Protocol'**). This releases the bus and stops the communication link with the addressed slave. All I₂C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address. If a transaction is terminated prematurely, the master needs to send a STOP condition to prevent the slave I₂C logic from getting stuck in a bad state. Attempting to read data from register addresses not listed in this section will result in FFh being read out.

Bus Protocol

H/S Mode Protocol

When the bus is idle, both SDA and SCL lines are pulled high by the pull-up devices.

The master generates a start condition followed by a valid serial byte containing HS master code 00001XXX.This transmission is made in F/S-mode at no more than 400 Kbps. No device is allowed to acknowledge the HS master code, but all devices must recognize it and switch their internal setting to support 3.4-Mbps operation. The master then generates a repeated start condition (a repeated start condition has the same timing as the start condition). After this repeated start condition, the protocol is the same as F/S-mode, except that transmission speeds up to 3.4 Mbps are allowed. A stop condition ends the HS-mode and switches all the internal settings of the slave devices to support the F/S-mode. Instead of using a stop condition, repeated start conditions should be used to secure the bus in HS-mode. If a transaction is terminated prematurely, the master needs sending a STOP condition to prevent the slave I2C logic from getting stuck in a bad state.

Attempting to read data from register addresses not listed in this section results in FFh being read out.

DATASHEET

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

I²C Update Sequence

The IC requires a start condition, a valid I₂C address, a register address byte, and a data byte for a single update. After the receipt of each byte, the IC acknowledges by pulling the SDA line low during the high period of a single clock pulse. A valid I₂C address selects the IC. The IC performs an update on the falling edge of the acknowledge signal that follows the LSB byte.

For the first update, the IC requires a start condition, a valid I₂C address, a register address byte, a data byte. For all consecutive updates, The IC needs a register address byte, and a data byte. Once a stop condition is received, the IC releases the I₂C bus, and awaits a new start conditions.

Following the successful acknowledgment of the slave address, the bus master will send a byte to the IC, which contains the address of the register to be accessed. The IC contains five 8-bit registers accessible via a bidirectional I₂C-bus interface. Among them, four internal registers have read and write access; and one has only read access.

REGISTER DESCRIPTION

Status/Control Register (Read/Write)

Memory Location: 00, Reset State: x1xx 0xxx

BIT	NAME	READ/WRITE	FUNCTION	
B7 (MSB)			Write: TMR_RST function, write "1" to reset the safety timer (auto clear) Read: OTG pin	
	TMR_RST/OTG	Read/Write	status, 0-OTG pin at Low level, 1-OTG pin at High level	
B6	EN_STAT	Read/Write	0-Disable STAT pin function, 1-Enable STAT pin function (default 1)	
B5	STAT2	Read Only	00-Ready, 01-Charge in progress, 10-Charge done, 11-Fault	
B4	STAT1	Read Only		
B3	BOOST	Read Only	1-Boost mode, 0-Not in boost mode	
B2	FAULT_3	Read Only	Charge mode: 000-Normal, 001-VBUS OVP, 010-Sleep mode, 011-Bad Adaptor or	
B1	FAULT_2	Read Only	VBUS <vuvlo, 100-output="" 101-thermal="" 110-timer="" 111-no="" battery<="" fault,="" ovp,="" shutdown,="" td=""></vuvlo,>	
		ULT_1 Read Only	Boost mode: 000-Normal, 001-VBUS OVP, 010-Over load, 011-Battery voltage is too	
B0 (LSB)	FAULT_T		low, 100-Battery OVP, 101-Thermal shutdown, 110-Timer fault, 111-NA	

Control Register (Read/Write)

Memory Location: 01, Reset State: 0011 0000

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	lin_Limit_2	Read/Write	00-USB host with 100-mA current limit, 01-USB host with 500-mA current limit, 10-
B6	lin_Limit_1	Read/Write	USB host/charger with 800-mA current limit, 11-No input current limit
B5	V(LOWV_2) (1)	Read/Write	Weak battery voltage threshold: 200mV step (default 1)
B4	V(LOWV_1)(1)	Read/Write	Weak battery voltage threshold: 100mV step (default 1)
B3	TE	Read/Write	1-Enable charge current termination, 0-Disable charge current termination (default 0)
B2	CE	Read/Write	1-Charger is disabled, 0-Charger enabled (default 0)
B1	HZ_MODE	Read/Write	1-High impedance mode, 0-Not high impedance mode (default 0)
B0 (LSB)	OPA_MODE	Read/Write	1-Boost mode, 0-Charger mode (default 0)

Control/Battery Voltage Register (Read/Write) Memory Location: 02, Reset State: 0000 1010

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	VO(REG5)	Read/Write	Battery Regulation Voltage: 640 mV step (default 0)
B6	VO(REG4)	Read/Write	Battery Regulation Voltage: 320 mV step (default 0)
B5	VO(REG3)	Read/Write	Battery Regulation Voltage: 160 mV step (default 0)
B4	VO(REG2)	Read/Write	Battery Regulation Voltage: 80 mV step (default 0)
B3	VO(REG1)	Read/Write	Battery Regulation Voltage: 40 mV step (default 1)
B2	VO(REG0)	Read/Write	Battery Regulation Voltage: 20 mV step (default 0)
B1	OTG PL	Deed	1-OTG Boost Enable with High level, 0-OTG Boost Enable with Low level (default 1);
Ы	OIG_FL	Read/Write	not applicable to OTG pin control of current limit at POR in default mode
		Read/Write	1-Enable OTG Pin in HOST mode, 0-Disable OTG pin in HOST mode (default 0), not
B0 (LSB)	OTG_EN	Reau/White	applicable to OTG pin control of current limit at POR in default mode

DATASHEET

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Vender/Part/Revision Register (Read only)

BIT	NAME	READ/WRITE	FUNCTION	
B7 (MSB)	Vender2	Read Only	Vender Code: bit 2 (default 0)	
B6	Vender1	Read Only	Vender Code: bit 1 (default 1)	
B5	Vender0	Read Only	Vender Code: bit 0 (default 0)	
B4	PN1	Read Only	- For I2C Address 6AH: 01–NA, 10–TD9157, 11–NA.	
B3	PN0	Read Only		
B2	Revision2	Read Only		
B1	Revision1	Read Only	011: Revision 1.0; 001: Revision 1.1; 100-111: Future Revisions	
B0 (LSB)	Revision0	Read Only		

Battery Termination/Fast Charge Current Register (Read/Write)

Memory Location: 04, Reset State: 0000 0001

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	Reset	Read/Write	Write: 1-Charger in reset mode, 0-No effect, Read: always get "0"
B6	VI(CHRG3)(1)	Read/Write	Charge current sense voltage: 27.2 mV step
B5	VI(CHRG2)(1)	Read/Write	Charge current sense voltage: 13.6 mV step
B4	VI(CHRG1) (1)	Read/Write	Charge current sense voltage: 6.8 mV step
B3	VI(CHRG0)(1)	Read/Write	NA
B2	VI(TERM2) (2)	Read/Write	Termination current sense voltage: 13.6 mV step (default 0)
B1	VI(TERM1)(2)	Read/Write	Termination current sense voltage: 6.8 mV step (default 0)
B0 (LSB)	VI(TERM0) (2)	Read/Write	Termination current sense voltage: 3.4 mV step (default 1)

(1) See Charge Current Settings for 55-m Ω , 68-m Ω and 100-m Ω Sense Resistors

(2) See Termination Current Settings for 55-m Ω , 68-m Ω , 100-m Ω Sense Resistors

• Charge current sense voltage offset is 37.4mV and default charge current is 550mA, if 68-m Ω sensing resistor is used and LOW_CHG=0.

Special Charger Voltage/Enable Pin Status Register

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	NA	Read/Write	NA
B6	NA	Read/Write	NA
B5	LOW_CHG	Read/Write	0 – Normal charge current sense voltage at 04H, 1 – Low charge current sense
			voltage of 22.1mV (default 0)
B4	DPM_STATUS	Read Only	0 – DPM mode is not active, 1 – DPM mode is active
В3	CD_STATUS	Read Only	0 – CD pin at LOW level, 1 – CD pin at HIGH level
B2	VSREG2	Read/Write	Special charger voltage: 320mV step (default 1)
B1	VSREG1	Read/Write	Special charger voltage: 160mV step (default 0)
B0 (LSB)	VSREG0	Read/Write	Special charger voltage: 80mV step (default 0)

• Special charger voltage offset is 4.2V and default special charger voltage is 4.52V.

• Default charge current will be 550mA, if 68-m Ω sensing resistor is used, since default LOW_CHG=0.

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

Safety Limit Register (READ/WRITE, Write only once after reset!)

Memory location: (6, Reset state: 01000000
--------------------	--------------------------

BIT	NAME	READ/WRITE	FUNCTION
B7 (MSB)	VMCHRG3(1)	Read/Write	Maximum charge current sense voltage: 54.4 mV step (default 0) (2)
B6	VMCHRG2(1)	Read/Write	Maximum charge current sense voltage: 27.2 mV step (default 1)
B5	VMCHRG1(1)	Read/Write	Maximum charge current sense voltage: 13.6 mV step (default 0)
B4	VMCHRG0(1)	Read/Write	Maximum charge current sense voltage: 6.8 mV step (default 0)
B3	Vmreg3	Read/Write	Maximum battery regulation voltage: 160 mV step (default 0)
B2	VMREG2	Read/Write	Maximum battery regulation voltage: 80 mV step (default 0)
B1	VMREG1	Read/Write	Maximum battery regulation voltage: 40 mV step (default 0)
B0 (LSB)	VMREG0	Read/Write	Maximum battery regulation voltage: 20 mV step (default 0)

(1) Refer to Charge Current Settings for 55-m $\Omega,$ 68-m Ω and 100-m Ω Sense Resistors

• Maximum charge current sense voltage offset is 37.4 mV (550mA), default at 64.6mV (950mA) and the maximum charge current option is 1.55A (105.4mV), if 68-m Ω sensing resistor is used.

• Maximum battery regulation voltage offset is 4.2V (default at 4.2V) and maximum battery regulation voltage option is 4.44V.

• Memory location 06H resets only when V(CSOUT) drops below V(SHORT) threshold (typ. 2.05V). After reset, the maximum values for battery regulation voltage and charge current can be programmed until any writing to other register locks the safety limits. Programmed values exclude higher values from memory locations 02(battery regulation voltage), and from memory location 04 (Fast charge current).

• If host accesses (write command) to some other register before Safety limit register, the safety default values are used.

Application Information

Charge Current Sensing Resistor Selection Guidelines

Both the termination current range and charge current range depend on the sensing resistor (RsNs). The termination current step (IOTERM_STEP) can be calculated using

 $I_{O(TERM_STEP)} = \frac{V_{I(TERM0)}}{R_{(SNS)}}$

shows the termination current settings for three sensing resistors.

Termination Current Settings for 55-m Ω , 68-m Ω , 100-m Ω Sense Resistors

BIT	VI(TERM) (mV)		I(TERM) (MA) R(SNS) =	I(TERM) (mA) R(SNS) =
BII		I(TERM) (mA) R(SNS) = 55m Ω	68m Ω	100m Ω
VI(TERM2)	13.6	247	200	136
VI(TERM1)	6.8	124	100	68
VI(TERM0)	3.4	62	50	34
Offset	3.4	62	50	34

For example, with a 68-m Ω sense resistor, V(ITERM2)=1, V(ITERM1)=0, and V(ITERM0)=1, ITERM = [(13.6 mV x 1) +

 $(6.8 \text{mV x 0}) + (3.4 \text{mV x 1}) + 3.4 \text{mV}] / 68 \text{m} \Omega = 200 \text{mA} + 0 + 50 \text{mA} + 50 \text{mA} = 300 \text{mA}.$

The charge current step (IO(CHARGE_STEP)) is calculated using

	VI(CHRG0)
^I O(CHARGE_STEP) =	R(SNS)

Charge Current Settings for 55-m $\Omega,$ 68-m Ω and 100-m Ω Sense Resistors

ВІТ	VI(REG) (mV)		IO(CHARGE) (MA) R(SNS)	IO(CHARGE) (MA) R(SNS)
		IO(CHARGE) (mA) $R(SNS) = 55m\Omega$	= 68m Ω	= 100m Ω
VI(CHRG3)	54.4	989	800	544
VI(CHRG2)	27.2	495	400	272
VI(CHRG1)	13.6	247	200	136
VI(CHRG0)	6.8	124	100	68
Offset	37.4	680	550	374

For example, with a 68-m Ω sense resistor, V(CHRG3)=1, V(CHRG2)=0, V(ICHRG1)=0, and V(ICHRG0)=1, ITERM = [(54.4mV x 1) + (27.2mV x 0) + (13.6mV x 0) + (6.8mV x 1) + 37.4mV] / 68m Ω = 800mA + 0 + 0 + 100mA = 900mA.

Output Inductor and Capacitance Selection Guidelines

The IC provides internal loop compensation. With the internal loop compensation, the highest stability occurs when the LC resonant frequency, f₀, is approximately 40 kHz (20 kHz to 80 kHz).

$$f_{\rm O} = \frac{1}{2\pi \times \sqrt{L_{\rm OUT} \times C_{\rm OUT}}}$$

can be used to calculate the value of the output inductor, LOUT, and output capacitor,

COUT.

To reduce the output voltage ripple, a ceramic capacitor with the capacitance between 4.7 μ F and 47 μ F is recommended for Cout, see the application section for components selection.

POWER TOPOLOGIES

System Load After Sensing Resistor

One of the simpler high-efficiency topologies connects the system load directly across the battery pack, as shown in **'System Load After Sensing Resistor'** The input voltage has been converted to a usable system voltage with good efficiency from the input. When the input power is on, it supplies the system load and charges the battery pack at the same time. When the input power is off, the battery pack powers the system directly.

System Load After Sensing Resistor

Fully Integrated Switch-Mode ChargerWith USB Compliance and USB-OTG Support TD9157

The advantages:

1. When the AC adapter is disconnected, the battery pack powers the system load with minimum power dissipation. Consequently, the time that the system runs on the battery pack can be maximized.

2. It reduces the number of external path selection components and offers a low-cost solution.

3. Dynamic power management (DPM) can be achieved. The total of the charge current and the system current can be limited to a desired value by setting the charge current value. When the system current increases, the charge current drops by the same amount. As a result, no potential over-current or over-heating issues are caused by excessive system load demand.

4. The total input current can be limited to a desired value by setting the input current limit value. USB specifications can be met easily.

5. The supply voltage variation range for the system can be minimized.

6. The input current soft-start can be achieved by the generic soft-start feature of the IC.Design considerations and potential issues:

1. If the system always demands a high current (but lower than the regulation current), the battery charging never terminates. Thus, the battery is always charged, and its lifetime may be reduced.

2. Because the total current regulation threshold is fixed and the system always demands some current, the battery may not be charged with a full-charge rate and thus may lead to a longer charge time.

3. If the system load current is large after the charger has been terminated, the IR drop across the battery impedance may cause the battery voltage to drop below the refresh threshold and start a new charge cycle. The charger would then terminate due to low charge current. Therefore, the charger would cycle between charging and terminating. If the load is smaller, the battery has to discharge down to the refresh threshold, resulting in a much slower cycling.

4. In a charger system, the charge current is typically limited to about 30mA, if the sensed battery voltage is below 2V short circuit protection threshold. This results in low power availability at the system bus. If an external supply is connected and the battery is deeply discharged, below the short circuit protection threshold, the charge current is clamped to the short circuit current limit. This then is the current available to the system during the power-up phase. Most systems cannot function with such limited supply current, and the battery supplements the additional power required by the system. Note that the battery pack is already at the depleted condition, and it discharges further until the battery protector opens, resulting in a system shutdown.

5. If the battery is below the short circuit threshold and the system requires a bias current budget lower than the short circuit current limit, the end-equipment will be operational, but the charging process can be affected depending on the current left to charge the battery pack. Under extreme conditions, the system current is close to the short circuit current levels and the battery may not reach the fast-charge region in a timely manner. As a result, the safety timers flag the battery pack as defective, terminating the charging process. Because the safety timer cannot be disabled, the inserted battery pack must not be depleted to make the application possible.

6. If the battery pack voltage is too low, highly depleted, totally dead or even shorted, the system voltage is clamped by the battery and it cannot operate even if the input power is on.

Package Information

CHIP SCALE PACKAGING DIMENSIONS

The TD9157 device is available in a 20-bump chip scale package (YFF, NanoFree[™]). The package dimensions are:

D	E	
Max = 2.17mm	Max = 2.03 mm	
Min = 2.11 mm	Min = 1.97 mm	

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. NanoFree™ package configuration.
 - The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
 E. Reference Product Data Sheet for array population.
 - 5 x 4 matrix pattern is shown for illustration only.
 - F. This package contains Pb-free balls.

Design Notes